PHYSICAL REVIEW E

VOLUME 50, NUMBER 1

JULY 1994

Propagative slipping modes in a spring-block model

Pep Espainol
Cavendish Laboratory, Cambridge University, Madingley Road CB3 OHE, United Kingdom
and Departamento de Fisica Fundamental, Universidad Nacional de Educacién a Distancia,
Apartado 60141, 28080 Madrid, Spain
(Received 5 November 1993)

Two transitions are observed in a version of the Burridge-Knopoff model of a tectonic fault. The
first transition has already been reported and occurs when the velocity scale of the friction force
is varied. We trace the origin of this transition back to what is happening for a single free block.
The second transition is observed when varying the speed of sound of the system and concerns the
possibility that the system exhibits solitary wave solutions. We provide a necessary condition for
the system having a stable solitary wave solution. This condition, which involves a single parameter
formed with three of the four parameters of the system, allows one to interpret some of the numerical

results.

PACS number(s): 64.60.Cn, 83.50.Tq, 91.30.—f

I. INTRODUCTION

In order to understand the ubiquitous presence of frac-
tal structures in nature, Bak, Tang, and Wiesenfeld [1]
introduced in 1987 the concept of self-organized critical-
ity. This appealing idea has stimulated since then a large
number of studies of systems as different as sand piles [1],
water erosion [2], and network rivers [3], or earthquakes
[4]. In the case of earthquakes, the Gutenberg-Richter
law implies a power law for the probability distribution
of seismic moments of events and it has been regarded as
an indication that the brittle fracture in the tectonic fault
critically self-organizes the fault. For this reason, much
effort has been devoted to the design of simple models
which capture the relevant features of a tectonic fault
and, in particular, produce a power law distribution of
seismic moments.

A simple model which accomplishes this is a deter-
ministic homogeneous one-dimensional (1D) version of
the Burridge and Knopoff model [5]. This model has
received much attention recently [6-10]. Carlson and
Langer identify three types of events: (1) Microscopic
events involving only a few blocks with maximum ve-
locities less than the pulling speed; these events tend
to smooth the inhomogeneities in the system, (2) local-
ized events with velocities larger than the pulling speed
(some stress is relaxed with these events), and (3) delo-
calized events whose velocities are much larger than the
localized events and release efficiently the majority of the
stress [6]. It is observed numerically that the delocalized
events are accompanied by fractures which propagate at
the order of the speed of sound. The selection mechanism
of the speed of the cracks has been studied analytically
by Langer and Tang [8]. A recent observation on the
same model is that at higher energy input rates the frac-
tures span the entire system and, for periodic boundary
conditions, solitary wave solutions appear [10]. These
propagating macrodislocations are specially relevant in a
recent laboratory experiment on earthquakes [11]. In this
experiment, Rubio and Galeano place an elastic gel be-
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tween two corotating cylinders and they measure with a
photoelastic technique the relaxation of the stress due to
slip with the boundary. They also describe two types of
characteristic motion depending on the rotational veloc-
ity of the inner cylinder. For small rotational velocities
they observe small localized slip events (but with expo-
nential statistics) and for large rotational velocities they
observe propagating slipping regions.

Another system where there appears a transition from
chaotic-type to solitary-wave-type solutions is in the ex-
trusion of a highly viscoelastic polymer melt through a
die [12]. Two surface defects are usually observed in the
extrudate which are termed sharkskin and helicoidal frac-
ture, respectively. Sharkskin is a small amplitude surface
defect that appears above a certain critical pressure of ex-
trusion. At even higher pressures the extrudate exhibits
helicoidal patterns [13]. We suggest that the dynamics of
the stress relaxation at the die exit responsible for shark-
skin and helicoidal patterns is essentially the same as that
of a tectonic fault [14]. In this way, slipping regions may
be localized, giving rise to sharkskin, or propagate along
the lip of the die exit, producing the helicoidal pattern
observed.

It seems that the comprehension of the way solitary
waves arise in spring-block models is important not only
as a problem per se in dynamical systems but also as
its potential application in understanding real physical
processes such as the ones described above.

In this paper we study numerically and analytically a
version of the Burridge-Knopoff model. Our purpose is
to scan the space of parameters in order to have better
comprehension of the appearance of the solitary wave so-
lutions reported by Schmittbuhl et al. [10]. We observe
two kinds of transitions leading to different regimes de-
pending on the values of certain groups of parameters.
The first transition has already been reported in [9] and
is obtained by varying the velocity scale of the friction
law. The second transition we report is obtained when
the rigidity of the chain of springs is varied. The sequence
for increasing rigidity is from local periodic motions to
chaotic and/or solitary wave motions and from there to
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global periodic motion. For fixed rigidity, the transition
from chaotic to solitary wave solutions has been described
in Ref. [10]. Here we show that the proper control pa-
rameter is /1 (see below) and not just 6 as stated in Ref.
[10].

The paper is organized as follows. In Sec. II we in-
troduce the model and present the simulation results. In
Sec. III we study the dynamics of a single free block
and in Sec. IV we consider the motion of the system
when a soliton is present. Finally, some conclusions are
presented.

II. THE MODEL
AND ITS NUMERICAL SOLUTION

The Burridge-Knopoff model consists of a set of NV
identical blocks of mass m connected with Hookean
springs of constant k.. Each block is moving in 1D and is
connected with another spring of constant k; to a pulling
bar moving at constant velocity V. Finally, each block
experiences a friction force which depends nonlinearly on
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the velocity of the blocks. The pulling bar may be moving
in the direction of the chain or in the transverse direc-
tion as this leaves unaltered the resulting equations of
motion. We find it more convenient for visualization of
the macrodislocations to think in terms of the transverse
geometry as depicted in the inset of Fig. 1(a).

The nontrivial element in the model is the friction law
of force. It is postulated as a monotonically decreasing
function of the velocity and this is the essential source of
instability in the distribution of forces on the blocks. We
select the following form for the friction force:

Fo

Fv) = _1+'u/vf’

(1)

where vy is a characteristic velocity for the friction (we
follow the notation in Ref. [9]). It is also postulated that
when a particle is at rest it remains at rest until the force
exerted by all the springs connected with it exceeds the
threshold friction Fy. For simplicity in the analytical re-
sults to be presented, only forward motions are allowed
in this model (i.e., v > 0) [7]. In the numerical im-
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FIG. 1. The average friction force per particle F as a function of the pulling velocity v for v = 1 and different values of

. (a) shows the curves for [ =0 (- - ), 1 =10.1 (
model. (b)isforl=1(—),1=2(—),1=3(—),
(d)isforl =40 (—),1=50 (—),l=0=o00 (""" ).

),and I =1 (
=5( ). (c)isforl=10 (—),1=20 (—),1=30( -

). Inset: a schematic diagram of the Burridge-Knopoff
) and,
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plementation, this means that the blocks move forward
until they reach a state of rest. At that point the velocity
is maintained at zero until the force due to the springs
overcomes the threshold Fj of static friction allowing for
forward motion again.

If X;(t) denotes the position of the ith block with re-
spect to a laboratory reference frame, the equations of
motion for the moving particles in the chain are

mX, = p(RO +Vt— X,') + kc(Xi+1 -2X; + X,'_l)
+F(X2), (2)

where Ry is the position of the bar at the initial time.
We will assume always periodic boundary conditions by
identifying the particles 1 and N + 1 (and the particles 0
and N).
By choosing the units of space and time as Fy/k, and
-1

w, ' = (m/kp)/2, respectively, the equation of motion

takes the dimensionless form

Ti = (1‘0 + vt — :Z:,') + lz(.’l:,'+1 —2z; + 3’1’—1) - ¢(:i:i/Vf),
®3)

where ©; = X;k,/Fp, T = wpt, and the dot means differ-
entiation with respect to 7. In addition,

(4)

k

2 - Fe
l._kp,
1
¢(x)—l+z

In Ref. [6] the parameter 2a = Vf_l is used. The pa-

rameter ! corresponds to the speed of sound of the har-
monic chain. We have solved numerically Eqgs. (3) for
different values of the parameters v,vs,l, N. As the pa-
rameter space is four dimensional, we expect to have a
rich phenomenology. The first step in order to have some
insight into the behavior of the system is to find a sin-
gle magnitude which captures this behavior. As it is
shown in Ref. [10], the average friction force per parti-
cde F = 4 ?;1((}5(:&,- /vs)), where the angular brackets
denote a time average, is a good magnitude for the fol-
lowing reason. For fixed v¢,l, N the average friction force
as a function of the pulling velocity v presents some local
minima precisely at the points where solitary waves exist
[10]. This is because a macrodislocation is a very effec-
tive way of reducing friction in the system. Therefore the
presence of minima in the curves of average friction force
will indicate solitonic activity in the chain of blocks.

We solve the equations with a Runge-Kutta scheme
with fixed time step. We have experimented with dif-
ferent time steps in order to select the appropriate one
(large enough to have good computational efficiency and
small enough to obtain reproducibility with even shorter
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time steps). Starting with a small spatial perturbation
(of amplitude 0.001) and zero velocity we evolve the sys-
tem during 500 units of time until it reaches a steady
state where in a statistical sense the physical magnitudes
do not show any temporal drift.

From then on we compute the average friction force
per particle from a trajectory 20.000 units of time long.
Initially we fix the number of blocks to N = 120 and
select two values for vy = 0.2 and 1 (corresponding to
a = 2.5,0.5). The results for v; = 1 are presented in
Fig. 1, where the average friction force is plotted as a
function of the dimensionless pulling velocity v for dif-
ferent values of the sound speed [. We observe in Fig.
1(a) that the average friction force for a single free block
(I = 0) represents a lower bound of the curves in that
figure. As ! increases, the average friction increases, but
the overall pattern is a monotonically decreasing func-
tion of the pulling velocity. At a value around [ =1 a
transition occurs as shown in Fig. 1(b). This transition
is characterized by the appearance of local minima and
by a global reduction of the average friction. By further
increasing [ new minima appear in the curves, as can be
observed in the curve for I = 10 in Fig. 1(c). Finally,
when [ reaches a value around 40, the minima disappear
as shown in Fig. 1(d). We have also plotted the curve
I = 0 in Fig. 1(d) for comparison, because it coincides
with the curve | = oo when all blocks are moving as a
rigid solid.

The limits ! = 0, [ = oo correspond to the single block
motion and rigid motion, respectively, and the motion
of the blocks will be essentially the same in both limits,
i.e., periodic motion. The transition as ! is increased is
therefore a three step transition, from free motion to co-
operative motion and from cooperative motion to rigid
motion. The visual inspection of the trace of the mo-
tion of the chain as [ is increased is very revealing [see
Figs. 2(a)-2(e)]. For small ! the motion of each individ-
ual block is periodic, but the small coupling with the rest
of the chain renders an alternating pattern as depicted in
Fig. 2(a). We have checked that the periodicity of each
block translates into a periodic pattern for the velocity
of the center of mass. For large ! the motion is also peri-
odic, as shown in Fig. 2(e). For intermediate values of [
we observe that there exists a certain amount of solitonic
activity, where small fractures propagate in both direc-
tions. Quite remarkably, for I = 2 [Fig. 2(c)] we observe
a qualitatively distinct behavior where the solitons run
through the whole system. This coincides with the ap-
pearance of a first minimum in the curve of the average
friction force. For I = 10 [Fig. 2(d)] we observe solitons
which give approximately two turns to the chain before
decaying. By increasing the pulling speed [Fig. 2(f)] the
soliton becomes stable at v = 0.068, where the first mini-
mum of the average friction force occurs for these N, vy, 1.
‘We have also confirmed the observations by Schmittbuhl,
Vilotte, and Roux [10] concerning the existence of two
solitary waves for the second valley (whenever it exists),
three for the third, etc.

The curves of average friction force for vy = 0.2 have
a behavior similar to the ones with v = 1, as it is shown
in Fig. 3. We observe a transition for [ ~ 1 from mono-
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FIG. 2. Image of the moving blocks for N = 120,vy = 1,v = 0.01, and different values for the speed of sound [. A black
dot in the horizontal line corresponding to particle i denotes that this particle is moving at time t. (a) I = 0.1, (b) I =1, (c)
l=2,(d) ! =10, (e) I =60. Also shown in (f) is the soliton that arises for [ = 10 and v = 0.068. Finally, (g) the image for
N =120,vy = 0.2,v = 0.01,] = 1. The images for (b) and (g) differ only in the value of vy.
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FIG. 2 (Continued).

tonically decreasing curves to curves with minima which
tend to disappear as | > 60. However, a difference be-
tween vy = 1 and v¢ = 0.2 must be noted. For vy =1
and small [ the average friction goes to 1 as v goes to 0,
whereas for vy = 0.2 this is not so. This suggests that a
transition with vy is in order [9]. By comparing the pic-
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FIG. 3. The average friction force per particle F as

a function of the pulling velocity v for vy = 0.2
and different values of I. In (a) 1=01("-")),
1=0.2( ), {=03(—), l=1(—), and in (b)

1=5( 9, 1=10(—), 1 =40 (—), I = 60 (—).
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tures of the system in Fig. 2(b) and Fig. 2(g) we observe
strikingly different states of motion. In the next section
we trace back the different global behavior for vy = 0.2
and vy = 1 to what is happening in the case of a single
free block.

Schmittbuhl et al. show that, for fixed [/, the average
friction force depends on N and v through the parameter
0 = Nv. We have performed another set of simulations
for a number of particles N = 80. In Fig. 4 we plot
the average friction force as a function of v and 6 for
vy = 0.2 and / = 1,10. We observe that the “solitonic”
curves (those exhibiting minima) have their minimum for
the same value of § but the nonsolitonic curves are not
functions of N and v through 6.

When ! is varying, we have observed that the relevant
parameter for the location of the minima is /1. This can
be seen in Fig. 5, where we represent the average friction
force as a function of Nv/!l for v = 1. We observe that
the location of the first minimum is at the same value
of this parameter, meaning that the solitons appear at a
given value of this parameter. We also observe that the
second minimum appears at a pulling velocity two times
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FIG. 4. Scaling of the curves of friction for vy = 0.2 and
different numbers of particles. Curves ( ) are for N = 80
and curves ( ) are for N = 120. The upper curves are for
1 = 1, the lower for ! = 10. In (a) the average friction force
is represented in front of v whereas in (b) it is represented in
front of 8 = Nv.
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FIG. 5. Scaling with Nv/l of the solitonic curves of aver-
age friction. The average friction for v; = 1 is plotted against
Nv/l for N = 120 (solid lines) for ! = 5, 10, 20, 30 (in descend-
ing order) and N = 80 (dotted line) for I = 10. The curves
have been vertically displaced for a better display, compare
with Fig. 1(c). The location of the first minimum is the same
for all the curves.

larger than the corresponding one for the first minimum.
In this figure it is also apparent that the second mini-
mum for N = 120,v¢ = 1.0,/ = 10 corresponding to two
solitary waves is not present for N = 80,vy = 1.0,/ = 10.

In the next sections, we will obtain some analytical
results which shed some light on the nature of the two
transitions observed when the parameters vy and [ are
varied.

III. EQUATION FOR A SINGLE FREE BLOCK

We have noted that the curves of average friction for
vy = 0.2 and vy = 1 have different global behavior. For
small I, the curves with vy =1 go to 1 as v goes to zero,
whereas the curves with vy = 0.2 do not go to 1. In order
to understand what is happening it is useful to look at
the limiting case where [ = 0. The case { = 0 corresponds
to a single free block with equation of motion

(1) =ro + vt — z(1) — Pp(z/vy). (5)

This equation has periodic solutions. If the initial condi-
tions are 7o = 1, 2(0) = 0, and £(0) = 0, then the par-
ticle is initially on the verge of instability. In this case,
the tension of the spring equates the threshold of static
friction which in the dimensionless units is 1. The par-
ticle starts moving at time 7 = 0 until the velocity van-
ishes at time 7,,, after traveling a distance z,, = (7).
Then it remains stuck until time 7" where the tension
of the spring again overcomes the static friction, that is,
1+vT — z,, = 1. From then on the motion repeats peri-
odically. The distance z,,, will be in general a parametric
function of v, vy, i.e.,

Ty = g(v,vg). (6)

For later convenience, in Fig. 6 we plot the form of the

FIG. 6. The function g(v,vs) — 2mrv. The maximum dis-
placement z,, for a single block as a function of v and vy is
given by z., = g(v,vy).

function g(v,v¢) — 2nv which has been computed nu-
merically. Equation (5) can be solved analytically in

two limiting cases, when vy = 0 and when vy = oo.
Let us discuss the vy = 0 case first, when the equa-
tion of motion becomes Z(7) = 1 + vt — z(7). The

solution with the above mentioned initial conditions is
z(1) = [1 — cos(7)] + v[r — sin(7)]. It is possible to find
T, tm by solving &(7) = 0 (i.e., sin(7)+v[1—cos(7)] = 0)
with the result cos(7,) = (¢2£1)/(v?+1). Whenv =0

the nontrivial solution is cos(7,,) = —1, implying
Tm = T,
(7)
Ty = 2.

In the case vy ~ oo the equation of motion takes the form
Z(71) = v1 — z(7) with solution z(7) = v[r —sin(7)]. In
this case, for all v we have

Tm = 2T,
(8)

Ty = 2TV

In this case the period T = z,, /v is equal to 7,,, and the
particle never stops. The asymptotic results in Egs. (7)
and (8) can be appreciated in Fig. 6.

Equations (7) and (8) suggest that for small values of
v there exists a transition as vy goes from zero to infinity
because for small values of v4 the jump in position of
the particle is large (of the order of 2) whereas for large
vy this jump is very small (27rv). The transition can be
described as a transition from a stick-slip motion for vy =
0 to a quasicontinuous motion for vy = co. The question
is, of course, whether this transition is sharp. In Fig. 6 we
observe that the transition smooths when v grows while
for small v there is a tendency towards a sharp transition.
The smaller v depicted in Fig. 6 is v = 0.033. In Fig. 7
we present the maximum displacement z,, as a function
of vs for smaller values of v, ie., v = 107%,1073,5 x
1073,1072. As v — 0, we observe the tendency towards
a sharp transition at vy = 0.5 or, equivalently, a = 1.
This transition is also reflected in the average friction
force F affecting the particle, as shown in Fig. 8. We
observe that when vy > 0.5 the average friction force
reaches a constant plateau value F = 1. In the limit
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Tm

FIG. 7. The maximum displacement z,, for a single block
as a function of vy and for small ». The upper curve
is for v = 107? and in descending order the curves for
v=5x10"%10"3,10""* follow.

vy — oo the average friction force is 1 because

1T
F = TlgxgoT/o [14+vr — z(7)]dr (9)
and z(7) = v[T —sin(7)]. We therefore conclude that in
the limit v — 0 there is a discontinuous transition as the
parameter vy is varied. For values of vy larger than 0.5
the motion is quasicontinuous while for vy smaller than
0.5 the motion is of the stick-slip type. In terms of the
average friction force the transition implies that for the
quasicontinuous motion F = 1 whereas for the stick-slip
motion the friction is smaller.

The presence of a transition for a single block when
v ~ 0 and vy is varied is also relevant for the case of
interacting blocks. The idea is that ] = 0 and I = oo are
the limiting cases for the curves of friction corresponding
to a given vy. Therefore all friction curves for a given
v¢ will exhibit the same trends as the limiting friction
curves, which correspond to the single block case. In
addition, the actual motion of the interacting chain also
reveals a qualitatively distinct behavior of the blocks for
different v¢ as can be appreciated in Figs. 2(b) and 2(g).
In Fig. 2(b) the particles move in a more continuous way
than in Fig. 2(g).

IV. PROPAGATIVE SLIPPING MODES

The motion of a block when the chain is moving
through a solitary wave is very similar to the motion of a
free block, except for the reduced mass to be assigned to
it. The motion has an intrinsic period determined by the
threshold condition. In order to comply with the periodic
boundary conditions it is a necessary condition that the
intrinsic period coincides with the period of revolution
of the solitary wave, and this imposes a restriction on
the values of the parameters that allow a solitary wave
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FIG. 8. The average friction force for a single block as a
function of vy for small ». The lower curve is for v = 1072 and
in ascending order the curves are for v = 5x107%,1073,107%,

to exist in the chain. Finally, the dissipative condition
requiring that the rate of input of energy and the dis-
sipation should exactly balance when a stable soliton is
present fixes completely the value of the pulling veloc-
ity at which there exists a soliton once the rest of the
parameters are fixed. Let us study this in some detail.
In order to investigate the solitary wave solutions, it is
convenient to take the continuum limit of Eq. (2). Follow-
ing Carlson and Langer [6] we introduce variables s = ia
and ¢ = la, where a is the (small) equilibrium distance
between blocks, and the equation of motion (3) becomes

E(s,7) =ro +vr —x(s,7) + (22" (s,7) — B[2(s,7) /vy,

(10)

where the double prime denotes second derivatives with
respect to s.

In the following we will assume that the chain sustains
a solitary wave of the form

z(s,7) = f(r — 8/B) + ro + v,
(11)
z(s,7) = f'(r — 8/8) + v.

Here, 3 is the unknown velocity of the wave. By substi-
tution of this solution into (10) we obtain the following
equation of motion for the particle located at s = 0:

pz(0,7) =ro +v7 — z(0,7) — P[2(0,T) /vy, (12)

which is similar to the equation for a single block (5)
except for the reduced mass u = 1 — ¢2/B%. This means
that the motion of a particular block when the chain
sustains a stable soliton is equivalent to the motion of a
single block of reduced mass. We select origins in such a
way that at 7 = 0 the particle at s = 0 is on the verge
of stability. In this case, z(0,0) = 0, £(0,0) = 0, and,
furthermore, #(0,0) = 0. Let us locate now the position
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ro of the pulling bar at the initial time. Because the
particle at s = 0 is on the verge of stability we have

ro + ¢22"(0,0) = 1. (13)

This means that the force (rp) exerted on the block at
s = 0 by the pulling spring plus the force [(2z"(0,0)] due
to the neighbor particles should equate the static friction
threshold (which is 1). If the chain moves with a soliton,
then #(0,0) = 0 implies "(0,0) = 0 and therefore ro = 1.
The condition z"(0,0) = 0 means that at the initial time
the neighbor springs are equally stretched in opposite
directions and, therefore, the force exerted on the particle
is due to the pulling spring and the friction only.

In the same way as for a single block, the particle at
s = 0 will move a distance z?, until it becomes stuck at
time 772, because the velocity vanishes at that time. It
then remains stuck until time T* when the springs’ force
overcomes the friction force again and the motion repeats
periodically. The intrinsic period T® of the particle at s =
0 is given by the threshold condition rq + vT*® —zf, =1,
ie,T® =z? [v.

It is a condition to be imposed that this time 7" should
coincide with the period of revolution of the soliton,
which is L/83, where L = Na is the length of the chain.
This condition, in turn, will ensure that the velocity of
the center of mass of the chain equals the pulling velocity.

It is not necessary to solve again Eq. (12) in order to
find z2,,77, as a function of the parameters v,vy, and
¢. By defining a stretched time variable ¥ = 7/¢ where
e = u/?2 (0 < e < 1) we can write (12) in exactly the
same form as (5) with the parameters 7 = ev,vy = evy.
Therefore we have

zi. = g(ev, evy), (14)

where the function g is the same as in Eq. (6). The
condition that the intrinsic period 7' should be equal to
the period of revolution of the soliton (or a submultiple
of it) implies

st _ glevievy) _ L 5)

nf

where n is an integer. For n = 2 we have two identical
solitons moving in the same direction at the same speed

and separated by a distance L/2 from each other, etc.
1/2

14 v

By using € = (1 — %) this equation takes the form

1 vL
mg(eu, €vy) = e (186)
This is an implicit equation for € which, in turn, allows
us to obtain the velocity 3 of the solitary wave.

The most important feature of G(e;v,vy) is that it is
a function of € bounded from below by a certain value
G, for all v,vy. One can appreciate this property in the
graph of g(v,vy) in Fig. 6. By fixing v, vy, the function
g(ev,evg) goes from 2 to g(v,vy) as € goes from 0 to
1, whereas the factor diverges at ¢ = 1. As a

G(e;v,vy) =

consequence, Eq. (16) will have a solution only if

vL vN

wC = i > Go. (17)
This is a necessary condition for the system having n
solitons.

There exists another condition that the solitary wave
configuration has to satisfy, which is a dissipative condi-
tion. The dissipative condition states that as the soliton
evolves steadily, the rate of input of energy into the sys-
tem must equate the rate of energy dissipated [10]. It
might be convenient at this point to recall some aspects
of the dissipation of energy in this system. In the dis-
crete version of the chain, the total energy of the system
is given by the kinetic energy plus the potential energy
stored in the pulling spring and the connecting springs.
In reduced units,

v 1 , 12 2
H = E —+§(1+u'r—:c,~) +E(:c,-—a:,;1) .
(18)

We may use the equations of motion (3) in order to com-
pute the time derivative of the energy with the result

N N
H = S g/t vl svr 2. (19

In obtaining this result, the periodicity of the chain has
been used (i.e., zo = znx and £y 41 = x1). The first term
in the right hand side of (19) accounts for the rate of
dissipation due to the frictional forces whereas the second
is the rate of input of energy due to the pulling springs.
In the continuum limit we have

L
H= ——/(; Plz(s,7)/vs|E(s,T)ds

L
— 7)ld
+V/O 1+vr —x(s,7)]ds
=-D+1. (20)

If the system is moving with a solitary wave, then H=0
and the dissipatior exactly balances the input of energy,
i.e., D = I. We could insert in (20) the solitary wave solu-
tion which will now be a parametric function of v, v¢,(, L.
The integral over s eliminates the time and position de-
pendence and we are left with an implicit condition to be
satisfied by the four parameters. By fixing vy, (, L, for
example, we obtain a unique value of v which allows the
solitary wave to comply with the dissipative condition.
This explains why a stable soliton is obtained only for a
particular value of v, once the rest of the parameters are
fixed.

It is interesting to check that the predictions of Eq.
(17) are entirely consistent with our observations of the
friction curves. Perhaps the most important consequence
of (17) is that the first valley corresponding to one soliton
will appear for a constant value of vN/l = 6/, as is seen
in Fig. 5. The second valley corresponding to two solitons
n = 2 appears for a value of the group vN/! two times
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larger than for the first valley. As ! is increased, we have
observed that the valleys disappear suddenly [see Figs.
1(c) and 1(d)]. Finally, as N is decreased, some of the
valleys disappear, as in the case of the second valley for
N = 80 in Fig. 5.

V. CONCLUDING REMARKS

We have investigated the influence of the parameters
vy and ! in the motion of the blocks in a version of the
Burridge-Knopoff model. We have observed that as the
velocity scale vy of the friction force is decreased, there
is a transition from a quasicontinuous motion to a stick-
slip motion of the blocks. This implies that the average
friction also experiences a transition, from the value 1
for quasicontinuous motion to values smaller than 1 for
the stick-slip motion. The possibility of this transition
has been suggested by Carlson and Langer after their
observation that the scaling of the distribution of mag-
nitudes of the slipping events changes as the parameter
a = 1/2v; approaches 1 [6]. They hypothesized that if
there was such a transition it could depend on the pulling
speed v. We have seen that the transition exists for a sin-
gle block and it is very sharp in the limit of small pulling
speeds. The change of behavior as vy is varied has also
been studied by de Sousa Vieira et al. [9] and they also
observe this transition but at a value of vy = 1, i.e.,
a = 0.5, instead of the value a = 1 reported by Carlson
and Langer. It seems like a factor of 2 is missing some-
where. As our law of friction is not exactly the same as
those in Refs. [6,9] (in the sense that we do not allow
backward motions), we cannot elucidate the location of
the source of the discrepancy.

When the parameter [ is varied, we have observed
that there is an interval of solitonic activity between two
values of lgee and lijgia- When I < lgee or I > ligia
the blocks in the chain move periodically whereas for

lgree < 1 < ligia the blocks exhibit more complex behav-
ior. This behavior is characterized by the appearance
of propagating fractures at a speed slightly larger than
the speed of sound. It is within this range of values of [
where chaotic motions are observed for small values of the
pulling velocity and solitary waves for larger values of v.
The solitonic activity is reflected in the form of the aver-
age friction force. In the solitonic interval lgree < I < lrigiq
the curves present some minima and globally the friction
is reduced. The minima occur for a given value of the
group Nv/l. Therefore when representing the average
friction force in front of this group we obtain an approx-
imate scaling of the curves. This scaling is not obtained
for the nonsolitonic curves, when the motion of the blocks
is periodic.

We have obtained a necessary condition for the exis-
tence of a solitary wave. This condition states that the
group v N/l should be larger than a certain value Go and
this allows us to understand many of the trends of the
average friction curves. In particular, it is obtained that
when [ increases the solitary wave mode of motion disap-
pears. This has been observed in the experiments by Ru-
bio and Galeano [11] where by increasing the rigidity of
the gel they observe that the motion is no longer through
propagating localized slipping regions but through global
relaxation of the gel as a whole in a quasiperiodic way.
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FIG. 1. The average friction force per particle F as a function of the pulling velocity v for vy = 1 and different values of
l. (a) shows the curves for =0 (-~ ), =0.1 (—), and I =1 (—). Inset: a schematic diagram of the Burridge-Knopoff
model. (b)isforl=1 ( p1=2(—),1=3(—),l=5("""). (c)isfor I =10 ( ), 1=20(—),1=30(--) and,
(d)isforl =40 (—), =50 (—),l=0=o00 (" ).
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FIG. 6. The function g(v,v¢) — 2rv. The maximum dis-
placement ., for a single block as a function of v and vy is
given by zm = g(v,vy).



